Periodic root branching in Arabidopsis requires synthesis of an uncharacterized carotenoid derivative.

نویسندگان

  • Jaimie M Van Norman
  • Jingyuan Zhang
  • Christopher I Cazzonelli
  • Barry J Pogson
  • Peter J Harrison
  • Timothy D H Bugg
  • Kai Xun Chan
  • Andrew J Thompson
  • Philip N Benfey
چکیده

In plants, continuous formation of lateral roots (LRs) facilitates efficient exploration of the soil environment. Roots can maximize developmental capacity in variable environmental conditions through establishment of sites competent to form LRs. This LR prepattern is established by a periodic oscillation in gene expression near the root tip. The spatial distribution of competent (prebranch) sites results from the interplay between this periodic process and primary root growth; yet, much about this oscillatory process and the formation of prebranch sites remains unknown. We find that disruption of carotenoid biosynthesis results in seedlings with very few LRs. Carotenoids are further required for the output of the LR clock because inhibition of carotenoid synthesis also results in fewer sites competent to form LRs. Genetic analyses and a carotenoid cleavage inhibitor indicate that an apocarotenoid, distinct from abscisic acid or strigolactone, is specifically required for LR formation. Expression of a key carotenoid biosynthesis gene occurs in a spatially specific pattern along the root's axis, suggesting spatial regulation of carotenoid synthesis. These results indicate that developmental prepatterning of LRs requires an uncharacterized carotenoid-derived molecule. We propose that this molecule functions non-cell-autonomously in establishment of the LR prepattern.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching.

Enzymes that are able to oxidatively cleave carotenoids at specific positions have been identified in animals and plants. The first such enzyme to be identified was a nine-cis-epoxy carotenoid dioxygenase from maize, which catalyzes the rate-limiting step of abscisic acid biosynthesis. Similar enzymes are necessary for the synthesis of vitamin A in animals and other carotenoid-derived molecules...

متن کامل

Plant Signaling: Notes from the Underground

New studies combining genetic and grafting approaches in Arabidopsis provide evidence that a carotenoid derivative is a novel plant signaling molecule through which roots can influence shoot branching and leaf development.

متن کامل

Defining the primary route for lutein synthesis in plants: The role of Arabidopsis carotenoid -ring hydroxylase CYP97A3

Lutein, a dihydroxy derivative of -carotene ( , -carotene), is the most abundant carotenoid in photosynthetic plant tissues where it plays important roles in light-harvesting complex-II structure and function. The synthesis of lutein from lycopene requires at least four distinct enzymatic reactions: and -ring cyclizations and hydroxylation of each ring at the C-3 position. Three carotenoid hydr...

متن کامل

Carotenoid oxygenases involved in plant branching catalyse a highly specific conserved apocarotenoid cleavage reaction.

Recent studies with the high-tillering mutants in rice (Oryza sativa), the max (more axillary growth) mutants in Arabidopsis thaliana and the rms (ramosus) mutants in pea (Pisum sativum) have indicated the presence of a novel plant hormone that inhibits branching in an auxin-dependent manner. The synthesis of this inhibitor is initiated by the two CCDs [carotenoid-cleaving (di)oxygenases] OsCCD...

متن کامل

Strigolactone Signaling in Arabidopsis Regulates Shoot Development by Targeting D53-Like SMXL Repressor Proteins for Ubiquitination and Degradation.

Strigolactones (SLs) are carotenoid-derived phytohormones that control many aspects of plant development, including shoot branching, leaf shape, stem secondary thickening, and lateral root growth. In rice (Oryza sativa), SL signaling requires the degradation of DWARF53 (D53), mediated by a complex including D14 and D3, but in Arabidopsis thaliana, the components and mechanism of SL signaling in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 111 13  شماره 

صفحات  -

تاریخ انتشار 2014